ANSWERS

Level 3 Chemistry
 91392 Demonstrate understanding of equilibrium principles in aqueous systems

Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of equilibrium principles in aqueous systems	Demonstrate in-depth understanding of equilibrium principles in aqueous systems	Demonstrate comprehensive understanding of equilibrium principles in aqueous systems

You should attempt ALL the questions in this booklet.
A periodic table is provided in the Resource Sheet.
If you need more room for any answer, use the extra space provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2-9 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

ASSESSOR'S USE ONLY

QUESTION ONE

$8.00 \times 10^{-3} \mathrm{~g}$ of calcium fluoride, CaF_{2}, will dissolve in 500 mL of water.
$M\left(\mathrm{CaF}_{2}\right)=78.0 \mathrm{~g} \mathrm{~mol}^{-1}$.
(a) Write the solubility product expression, K_{s}, for calcium fluoride.

$$
K_{s}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}
$$

(b) (i) Calculate the solubility of calcium fluoride in $\mathrm{mol} \mathrm{L}^{-1}$, at this temperature. $8.00 \times 10^{-3} \mathrm{~g}$ of CaF_{2} will dissolve in 500 mL 0.0160 g of CaF_{2} will dissolve in 1000 mL

$$
n=m / M n=0.0160 / 78.0=2.05 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}(3 \text { s.f. })
$$

(ii) Calculate the K_{s} of calcium fluoride.

$$
K s=4 s^{3}
$$

$$
K s=4 s^{3}=3.45 \times 10^{-11}(3 \text { s.f. })
$$

\qquad
\qquad
(c) Explain how the solubility of calcium fluoride, CaF_{2}, will change if added to 500 mL of a $0.200 \mathrm{~mol} \mathrm{~L}^{-1}$ sodium fluoride solution instead of 500 mL of water. Support your answer with balanced equations.
No calculations are necessary.

It will decrease as NaF contains fluoride, $\mathrm{F}^{-}(\mathrm{aq})$ which is a common ion. Using equilibrium principles, the back reaction will be favoured so the solubility of the CaF_{2} will decrease.
(d) Determine whether a precipitate will form when 20.0 mL of $0.00200 \mathrm{~mol} \mathrm{~L}^{-1}$ potassium chromate, $\mathrm{K}_{2} \mathrm{CrO}_{4}$ are mixed with 60.0 mL of $1.25 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ lead nitrate, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} . \mathrm{K}_{s}\left(\mathrm{PbCrO}_{4}\right)=2.8 \times 10^{-13}$ at $25^{\circ} \mathrm{C}$.

IP or $Q=\left[\mathrm{Pb}^{2+}(\mathrm{aq})\right]\left[\mathrm{CrO}_{4}^{2-}(\mathrm{aq})\right]$
$\left[\mathrm{Pb}^{2+}(a q)\right]=20.0 / 80.0 \times 0.00200=5.00 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
$\left[\mathrm{CrO}_{4}^{2-}(\mathrm{aq})\right]=60.0 / 80.0 \times 1.25 \times 10^{-4}=9.375 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
$Q=\left[5.00 \times 10^{-4}\right]\left[9.375 \times 10^{-5}\right]=4.69 \times 10^{-8}(3$ s.f. $)$
Since $Q>K_{s}\left(2.8 \times 10^{-13}\right)$ then a precipitate will form
\qquad

Question Two

(a) Methyl ammonium bromide, $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}$ dissolves in water to form a weakly acidic solution. $\mathrm{K}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right)$is 2.28×10^{-11}.

Write an equation for when methyl ammonium bromide dissolves in water AND the reaction that then occurs in the aqueous solution.
$\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}(\mathrm{s}) \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$
$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
Since $\left[\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})\right]>\left[\mathrm{OH}^{-}\right]$from the dissociation of water then the solution is weakly acidic.
(b) Calculate the pH of $0.350 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{Br}$ solution.
$\mathrm{Ka}_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} /$ [salt $]$
$2.28 \times 10^{-11}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} /[0.350]$ therefore $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}=7.98 \times 10^{-12}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.82 \times 10^{-6} \mathrm{~mol} \mathrm{~L}$ - $. \mathrm{pH}=-\log 2.82 \times 10^{-6}=5.55$ (3 s.f.)

Or $\mathrm{Ka}=\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right]$
\qquad
\qquad
\qquad
(c) The table shows the pH and electrical conductivity of three solutions. Their concentrations are all $0.150 \mathrm{~mol} \mathrm{~L}^{-1}$.

Solution	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	NaOH	$\mathrm{NH}_{4} \mathrm{Cl}$
pH	8.91	13.2	5.06
Electrical conductivity	poor	good	good

Compare and contrast the pH and electrical conductivity of these three solutions. Include appropriate equations in your answer.
pH :
The pH of a solution is calculated from its $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.
NaOH is an ionic solid that is a strong base and dissociates completely to produce a high OH^{-}concentration (low $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$).
Since $\left[\mathrm{OH}^{-}\right]$is high / $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is low, the pH is high.
$\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ is a weak base that partially reacts / dissociates / ionises with $\mathrm{H}_{2} \mathrm{O}$ producing a lower concentration of OH^{-}
Therefore it has a lower pH than NaOH :
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}$
The $\mathrm{NH}_{4} \mathrm{Cl}$ is an ionic solid that dissolves completely in $\mathrm{H}_{2} \mathrm{O}$. The $\mathrm{NH}_{4}+$ ion is a weak acid that partially reacts with $\mathrm{H}_{2} \mathrm{O}$ producing a low concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$
The pH is closer to 7, showing it is a weak acid. Therefore it has a lowest pH.

Electrical conductivity:

Electrical conductivity is determined by the total concentration of ions.
Since $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ is a weak base, it only partially reacts with water to produce a low concentration of ions in solution so it is a poor electrical conductor.
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}$
NaOH completely dissolves to produce a high concentration of Na^{+}and OH^{-}ions in solution. $\mathrm{NaOH}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ Therefore it is a good conductor.

NH 4 Cl is also an ionic solid. It dissolves completely to produce a high concentration of NH_{4}^{+}and Cl^{-}ions: $\mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$Therefore it is a good conductor.

Question Three

Methanoic acid, HCOOH , is a weak acid. $\mathrm{pK}_{\mathrm{a}}(\mathrm{HCOOH})=3.75$
(a) (i) List all the species present in a solution of HCOOH , in order of decreasing concentration. Do not include water.
$\mathrm{HCOOH}>\mathrm{HCOO}^{-}=\mathrm{H}_{3} \mathrm{O}^{+}>\mathrm{OH}^{-}$
(ii) Show that the pH of a $0.100 \mathrm{~mol} \mathrm{~L}^{-1}$ methanoic acid solution is 2.38 .
\qquad
$\mathrm{Ka}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} /[$ acid $]$
$p K_{a}(H C O O H)=3.75$ therefore $K_{a}=10^{-3.75}=1.78 \times 10^{-4}$
$1.78 \times 10^{-4}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} /[0.100]$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}=1.78 \times 10^{-5}$, so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.22 \times 10^{-3}$
$\mathrm{pH}=-\log 4.22 \times 10^{-3}=2.38$ (3 s.f.)
(b) (i) Here is the titration curve for the addition of 20.0 mL of $0.100 \mathrm{~mol} \mathrm{~L}^{-1}$ sodium hydroxide solution to 10.0 mL of $0.100 \mathrm{~mol} \mathrm{~L}^{-1}$ methanoic acid solution. Clearly label the buffer zone and equivalence point.

(ii) Identify the indicator that would be most suitable for this titration and explain your choice.

Indicator	Bromocresol green	Phenolphthalein	Alizarin yellow R
pK_{a}	4.7	9.4	11.2

Indicators are effective in the range $\mathrm{pH}=\mathrm{pK}_{a} \pm \mathrm{I}$.
Phenolphthalein is a suitable indicator as its $p K_{a}$ is within I pH unit of equivalence point. Hence it will change colour at the equivalence point of the reaction in the steepest part of the graph.

Note: Bromocresol green will change colour in the buffer region and just after as its colour changes between pH 3.7 and 5.7 making this indicator unsuitable. Alizarin yellow R would change colours over pH range I0.2-I2.2 which is after the vertical portion.
(c) A buffer solution is formed when sodium hydroxide solution is added to methanoic acid. Using equations involving methanoate ions, describe how a solution containing methanoic acid and sodium methanoate acts as a buffer.

A buffer is a solution that undergoes a minimal change of pH when small amounts of acid or base are added.

HCOOH will react with added OH^{-}ions so there is almost no change in [OH-]
$\mathrm{HCOOH}+\mathrm{OH}^{-} \rightarrow \mathrm{HCOO}^{-}+\mathrm{H}_{2} \mathrm{O}$
HCOO^{-}will react with added $\mathrm{H}_{3} \mathrm{O}^{+}$ions so there is almost no change in $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{HCOO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{O}$
(d) (i) 2.45 g of sodium hydroxide was added to 400 mL of $0.350 \mathrm{~mol} \mathrm{~L}^{-1}$ methanoic acid. Calculate the pH of the buffer. $\mathrm{M}(\mathrm{NaOH})=40.0 \mathrm{~g} \mathrm{~mol}^{-1}$.

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pKa}+\log ([\text { base }] /[\text { acid }]) \\
& \mathrm{pK}_{a}(\mathrm{HCOOH})=3.75
\end{aligned}
$$

$$
\mathrm{NaOH}+\mathrm{HCOOH} \rightarrow \mathrm{HCOONa}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{aligned}
& n(\mathrm{NaOH})=m / \mathrm{M}=2.45 / 40.0=0.06125 \mathrm{~mol} . \\
& n(\mathrm{HCOOH})=\mathrm{CV}=0.350 \times 0.400=0.140 \mathrm{~mol} \\
& n(\mathrm{HCOONa}) \text { made }=0.06125 \mathrm{~mol} \\
& n(\mathrm{HCOOH}) \text { unreacted }=0.140-0.06125=0.07875 \mathrm{~mol} \\
& c(H C O O N a) 0.06125 / 0.400=0.153 \mathrm{~mol} \mathrm{~L}^{-1 *} \\
& c(H C O O H) 0.07875 / 0.400=0.197 \mathrm{~mol} \mathrm{~L}^{-1 *}
\end{aligned}
$$

*No need to calculate as it is ratio of mol baselacid that is needed and both now in same 400 mL)
$\mathrm{pH}=p k a+\log [$ base $] /[$ acid $]=3.75+\log (0.153 / 0.197)=3.64$ (3 s.f.)
(ii) Evaluate the ability of this solution, in (d)(i) to function as a buffer.

It can work as a buffer as it contains both HCOOH and HCOO^{-}. The lower amount / concentration / number of HCOO^{-}ions in solution mean it would not be as effective at buffering added $\mathrm{H}_{3} \mathrm{O}^{+}$as it would be for added OH^{-} ions.

Extra paper if required.
Write the question number(s) if applicable

NB2S 2017
Any part of this publication may be reproduced by any means without needing any prior permission! No Brain Too Small © CHEMISTRY ${ }^{\circ}$ AS 91392

